

KeiganALI I/O ポート 仕様

ファームウェア ver 1.10 以降対応

改訂履歴

- 2024/7/26
- 2024/7/16
- 2023/9/21
- 2021/9/15

目次

- 電源出力
- 動力遮断
- ・GPIOポート
- ・プルアップ抵抗の選定
- オプション品

電源出力

バッテリー電源と5V出力

電源出力

USB Type-C レセプタクル 合計電流:

最大 3A

常時出力 5.1V

リレー経由出力 5.1V(※)

BATT ALWAYS: バッテリー電源出力 BATT RELAY: バッテリー電源 リレー経由出力(※)

バッテリー電源のため、 21.5 V~29.2 V 程度変動 がある

合計電流:最大 10A AMR 動作時 5A

※ 本体内部に15A ヒューズあり。超えないこと。 また、プラスマイナスをショートさせないこと。

※ リレーの作動は、タスクセットのタスクまたはAPI(PowerOutput)から可能

スプリング端子台から 電線を外すとき

[緑色端子台の場合] マイナスドライバーを 挿入しながら電線を 引き抜く

[灰色端子台の場合] ボタンを押しながら 電線を引き抜く

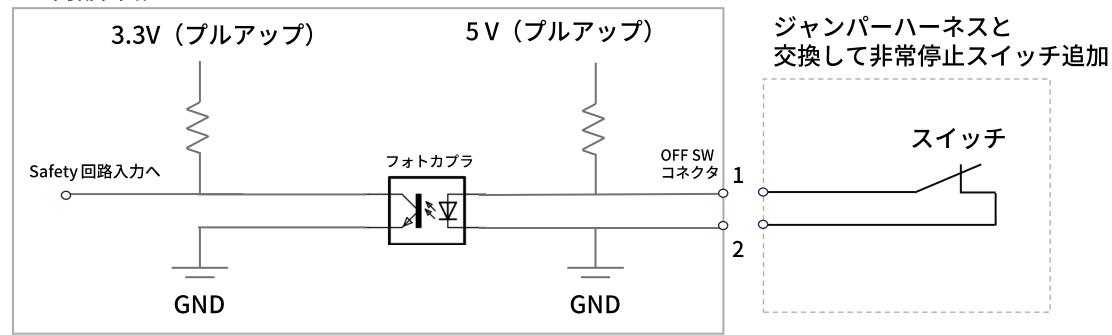
動力遮断

OFF SW コネクタ

動力遮断スイッチ

動力遮断スイッチ OFF SW コネクタ このコネクタを利用することで、非常停止ボタンを増設することが可能 ・ (ショート状態)クローズ:正常、オープン:動力断

工場出荷状態では、ジャンパーまたはジャンパーハーネスを接続済み。


実装レセプタクル品番 JST S2B-XH-A

→ プラグ 品番: JST XHP-2 コネクタを使用して非常停止用のハーネスを製作してください

動力遮断スイッチを増設する

ALI内部回路

スイッチがクローズ(閉)だと、1-3は同電位で フォトカプラは動作しない → Safety 回路入力は、3.3Vになり、動力出力許可

スイッチがオープン(開)だと、1-3に電位差があり

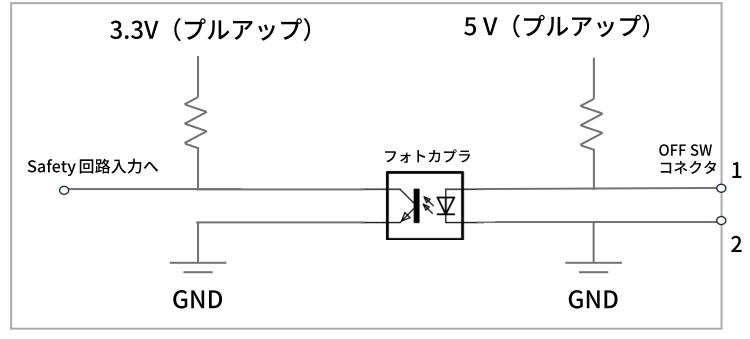
フォトカプラは動作する

→ Safety 回路入力は、GNDになり、モーター駆動 動力出力不許可(動力遮断状態)

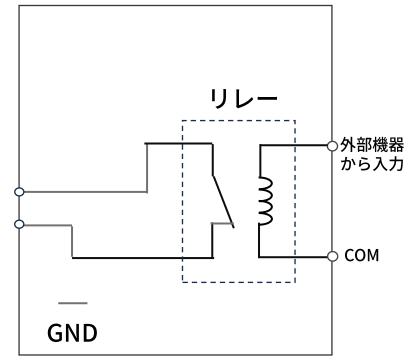
b接点の非常停止ボタンを使用すること (押したら閉じていた回路が開状態)

N.C. = Normally Close

通常時:クローズ


追加する回路

非常停止時:オープン



外部入力から動力遮断を行う

ALI内部回路

スイッチがクローズ(閉)だと、1-3は同電位で フォトカプラは動作しない

→ Safety 回路入力は、3.3Vになり、動力出力許可

スイッチがオープン(開)だと、1-3に電位差があり

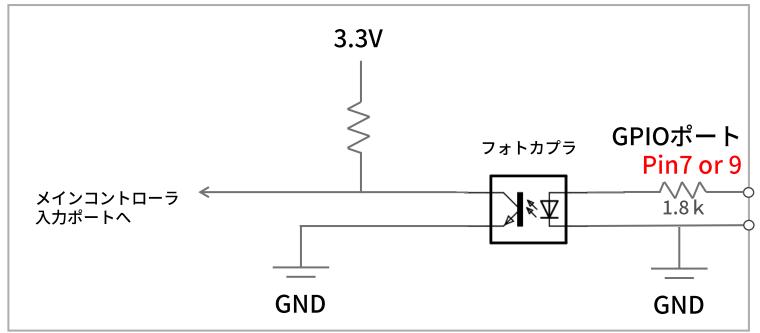
フォトカプラは動作する

→ Safety 回路入力は、GNDになり、モーター駆動 動力出力不許可(動力遮断状態)

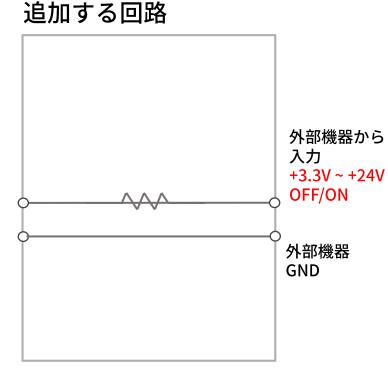
GPIOポート

GPIO入出力とエラー出力

GPIOポートのピン機能


レセプタクル側コネクタ JST S16B-PHDSS-B 対応プラグコネクタ JST PHDR-16VS								F	Pin			Pin	
16	14	12	10	8	6	4	2		1	5V		2	5V
15	13	11	9	7	5	3	1		3	Input(BATT Relay) (Open/Low:許可デフォルト,High	h:不許可)	4	Reserved
									5	GND		6	GND
※写真右下が1番と								ピン	7	(101)Input: HIGH		8	(201)Output: HIGH
(GPI	0							9	(102)Input: LO\	W	10	(202)Output: HIGH
'									11	Error output		12	Reserved
			Thurs .						13	GND		14	Reserved
-	188	999							15	Reserved		16	Reserved

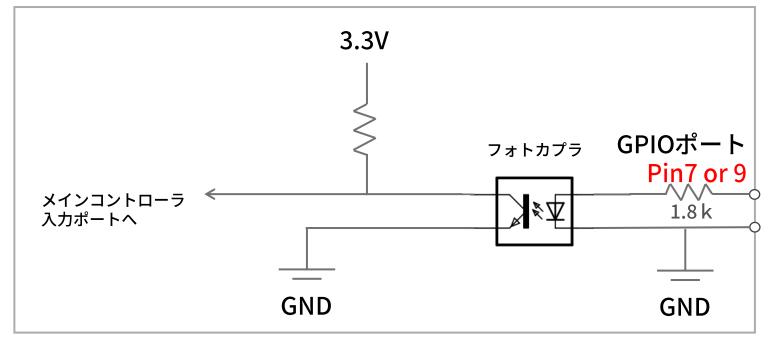
Pin11 エラー出力 ALI本体ファームウェア Ver 1.1.0 より機能追加



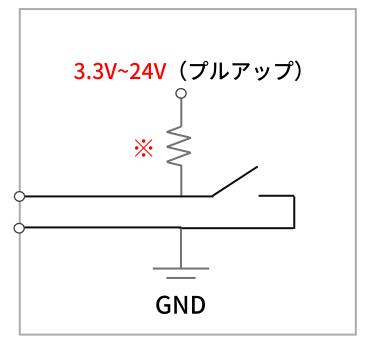
GPIO入力を外部機器に接続

ALI内部回路

※フォトカプラの推奨電流は10mA(絶対定格:50mA)



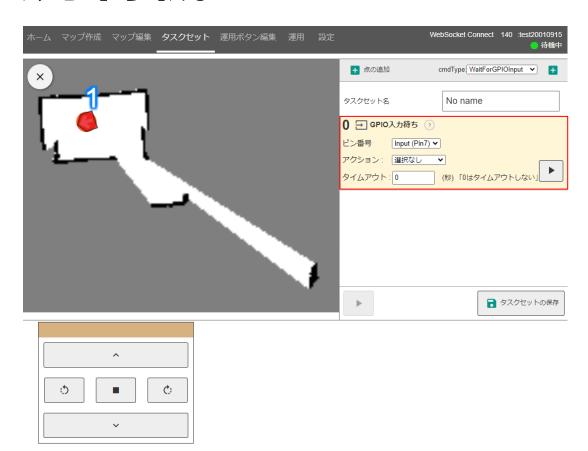
※ [プルアップ抵抗の選定] ページ参照


GPIO入力をスイッチに接続

ALI内部回路

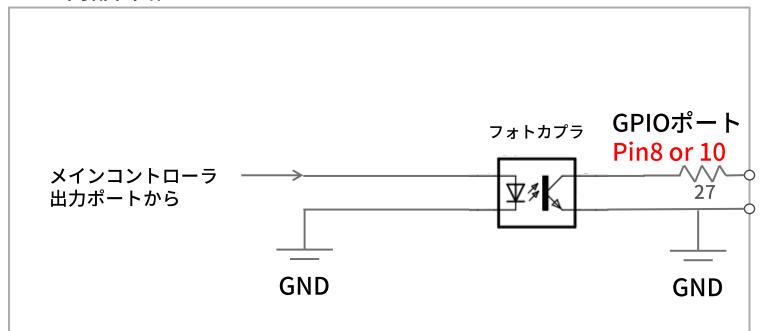
※フォトカプラの推奨電流は10mA(絶対定格:50mA)

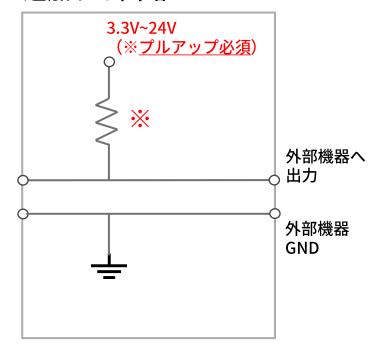
追加する回路 スイッチなど



※ [プルアップ抵抗の選定] ページ参照

アプリ側設定 GPIO入力待機

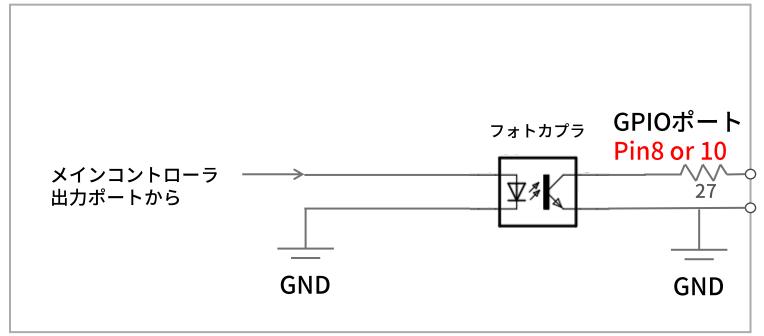

- タスクセットの編集画面、右上の プルダウンメニューから、GPIO入力待機 [WaitForGPIOInput] を選択する
- 右上の [+] ボタンで同タスクをタスクセットに追加する
- ピン番号 に、Pin7 または Pin9 を入力する
- アクションを選択する。この場合は、 [ローからハイ] 外部からの入力が、ローからハイに変化したときに待機状態がクリアされ、次のタスクに移行する。
- タスク実行開始後、条件を満たさずにタイムアウトを超えるとエラーとなる。


GPIO 出力を外部機器に接続

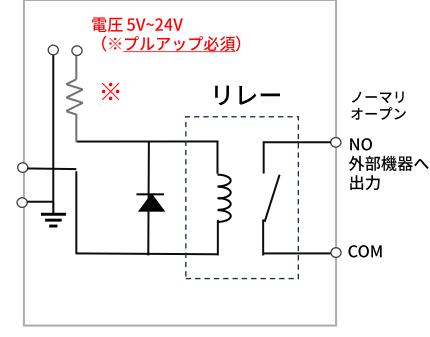
ALI内部回路

※フォトカプラの推奨電流は10mA(絶対最大定格:50mA)

追加する回路



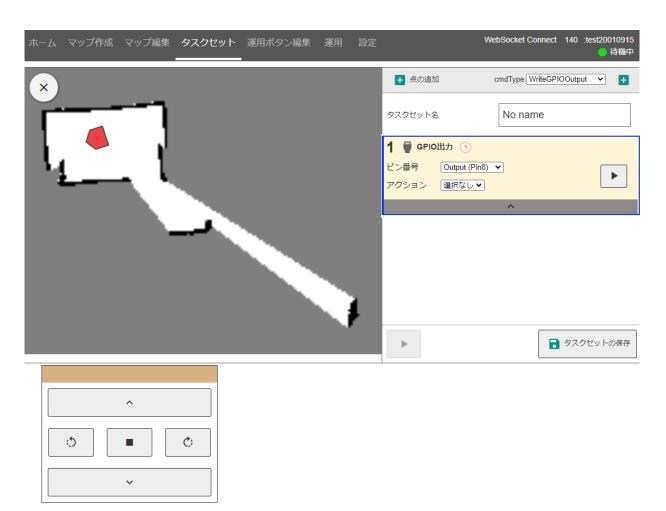
※ [プルアップ抵抗の選定] ページ参照


GPIO出力を外部リレーに接続

ALI内部回路

※フォトカプラの推奨電流は10mA (絶対最大定格:50mA) リレー駆動時でも絶対最大定格の1/2以下で ディレーティングすること(25mA以下)

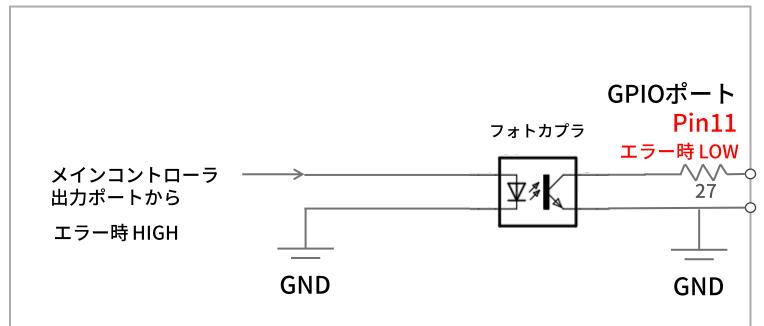
追加する回路



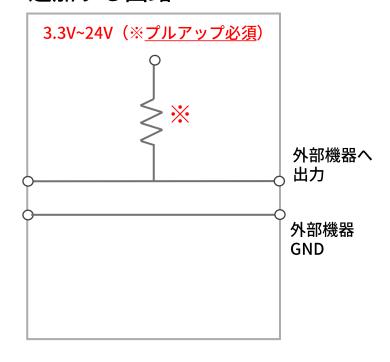
※ [プルアップ抵抗の選定] ページ参照 リレーの定格仕様要確認

アプリ側設定 GPIO出力

- タスクセットの編集画面、右上のプルダウンメニューから、GPIO出力 [WriteGPIOOutput] を選択する
- ・右上の [+] ボタンで同タスクをタスクセットに追加する
- ピン番号 に、Pin8 または Pin10 を入力する
- ・アクションを選択する。[ハイ]の場合は、 外部への出力を[ハイ]とする。この出力は タスクセット終了後も維持される。



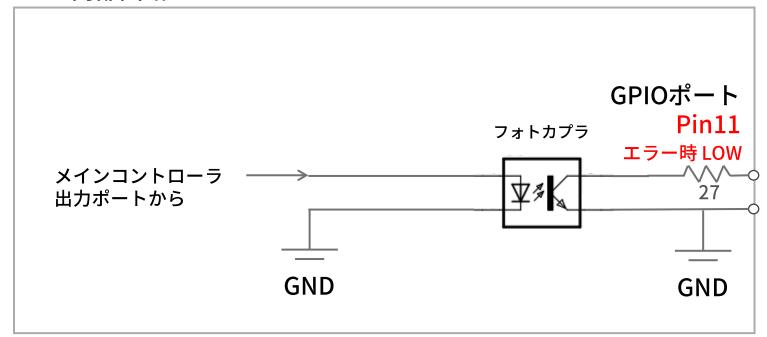
エラー出力を外部機器に接続


エラー出力は、ALI のステータスが ERROR になった場合、アクティブローとなる

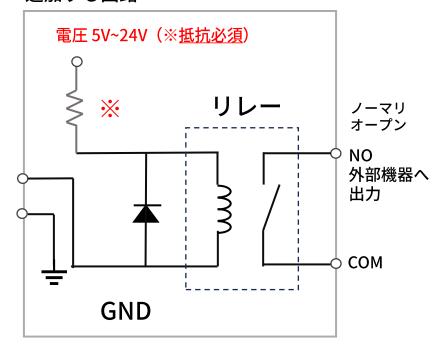
ALI内部回路

※フォトカプラの推奨電流は10mA(絶対定格:50mA)

追加する回路



※ [プルアップ抵抗の選定] ページ参照


エラー出力を外部リレーに接続

ALI内部回路

※フォトカプラの推奨電流は10mA (絶対最大定格:50mA) リレー駆動時でも絶対最大定格の1/2以下で ディレーティングすること(25mA以下)

追加する回路

※ [プルアップ抵抗の選定] ページ参照

プルアップ抵抗の選定

GPIO入力側 抵抗の選定

- ・電圧について
 - ALIからの電圧または外部電圧いずれを使用しても良い。
 - ALI の 5V 及び バッテリー電圧 を使用可能
 - ・ 外部電圧を使う場合も GNDは共通とすること
- ・抵抗の選択例

 $1.8 k \Omega$ 1/10W

LED V_f 1.25V, 電流(1mA~16mA), 抵抗電力1/20W以下に設定

- · 3.3Vに接続時
 - (3.3V-1.25 V) /1.8 k Ω=1.4mA ∴内蔵抵抗でOK。外付けは無くて良い。
- 5Vに接続時
 - (5V-1.25 V) / 1.8 k Ω = 2.08mA :内蔵抵抗でOK。外付けは無くて良い。
- 24Vに接続時

(24V-1.25V) / 1mA=∴22.75 kΩ -1.8 kΩ→20.95 kΩ ∴18kΩ 1.26m A 1/35W

GPIO出力側の抵抗の選定1

- プルアップする電圧について
 - ・ALIからの電圧または外部電圧いずれを使用しても良い。
 - ALI の 5V 及び バッテリー電圧 を使用可能
 - · 外部電圧を使う場合も GNDは共通とすること
- 抵抗の選択例コレクタ電流(1mA~10mA)設定 Vce(sat) 0.3Vで計算
 - 3.3Vに接続時 (3.3V-0.3 V) /1mA=3000Ω ∴2.2kΩ
 - ・5Vに接続時 (5V-0.3 V) /1mA=4700Ω ∴2.2kΩ(1/100W)
 - 24Vにプルアップ (24V-0.3 V) /1mA=23.7 kΩ ∴22kΩ (1/38W)

GPIO出力側の抵抗の選定2:リレー駆動

- ・プルアップする電圧について
 - ALIからの電圧または外部電圧いずれを使用しても良い。
 - ALI の 5V 及び バッテリー電圧 を使用可能
 - 外部電圧を使う場合も GNDは共通とすること
 - リレーコイル部には逆起防止のダイオード必ず入れること。 無い場合は製品側のフォトカプラが破損します。
- ・抵抗の選択例

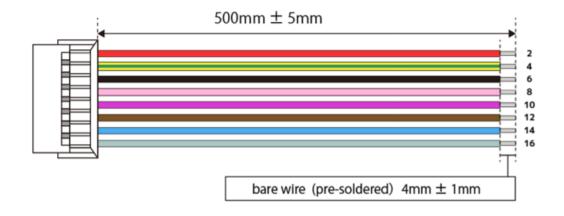
コレクタ電流(1mA~10mA)設定 Vce(sat) 0.3Vで計算

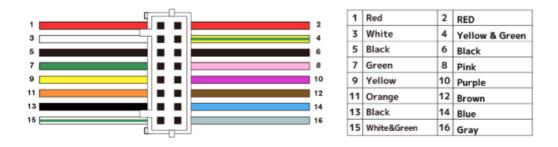
5V 125mW typeリレー使用時

必要電流は26mAギリギリで検証する 内部抵抗負荷26mA^2x27Ω = 18.2mW (1/55W) ∴OK 抵抗は0 (無し) ~4.7Ω程度 5V 時は 125mW を超えるリレーは不可とする。

24V 250mW typeリレー使用時

必要電流は10.4mA 内部抵抗負荷10.4mA² x 27Ω = 3mW (1/342W) ∴OK 抵抗は0(無し)~4.7Ω程度


オプション品


I/Oポートに関するオプション品

GPIOハーネス

GPIOポート用ハーネスをオプション品として販売しております。 ご購入希望の方は販売店にご連絡ください。

